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Abstract

The linearized Navier-Stokes equations for incompressible
channel flow are considered in which the flow is homogeneous
in two directions. We study the initial-value problem for υ and
ωy, where y is the coordinate normal to the wall. After a Laplace
transform in time and a double Fourier transform in space we
use the WKB approximation on the resulting system of ODE’s
in y to construct analytically the Green’s function for such so-
lutions for the inviscid case in terms of the Bessel functions J1
and Y1, their modified counterparts, and the Airy functions Ai
and Bi.

Introduction

In a number of recent investigations of wall-bounded flows, so-
lutions to the linearized Navier-Stokes equations have played a
major role. Such examples are the study of the origin and role
of very large scale structures in the dynamics of turbulent pipe
flow (McKeon and Sharma [4]) and the development and appli-
cation of low-complexity models to investigate the statistics of
wall-bounded turbulent flows (Zare et. al [5]). In both cases the
authors had to undertake a significant computational effort to
compute the resolvent of the Orr-Sommerfeld/Squire operator.

In this paper, we find, semi-analytically, solutions to the in-
viscid linearized equations for channel flow. After a Laplace
transform in time and a double Fourier transform in space we
use the WKB approximation (see, e.g., Bender and Orszag [1])
on the resulting system of ODE’s in y to construct analytically
the Green’s function for such solutions in terms of the Bessel
functions J1 and Y1, their modified counterparts, and the Airy
functions Ai and Bi. In this approach the critical layers or the
y locations where U(y) = ω/kx require special attention, when
they exist, as well as the locations of the turning points where
d2U/dy2 = (k2

x +k2
z )(ω/kx−U(y)), when they exist. This anal-

ysis then gives analytically the response of the linear system
to an arbitrary forcing function, facilitating the investigation of
many aspects of turbulent flows. Not considered in this paper
are viscous corrections to the inviscid solutions that are required
at the walls at the critical layers. Use of the WKB approxima-
tion for this application has along history. See, e.g., Drazin and
Reid [2].

Linearized Navier-Stokes Equations

Consider flow in a plane channel with walls at y = ±δ and pe-
riodic boundary conditions in the x and z directions. In the
following we will be working in Fourier space in the x and z
directions. The steady mean flow and vorticity are give as

U = (U(y),0,0) (1)
Ω = (0,0,−dU(y)/dy)

We assume the flow is symmetric, i.e., U(−y) = U(y) and that
dU/dy≥ 0 for |y| ≤ δ. The linearized Navier-Stokes equations

for υ and ωy, Laplace transformed in time, are then

(U(y)− c)(
d2υ

dy2 − k2
⊥υ)−U ′′(y)υ=

−iν
kx

(
d2

dy2 − k2
⊥

)2

υ− i
kx

υ0 (2)

(U(y)− c)ωy +
kz

kx
U ′(y)υ=

−iν
kx

(
d2

dy2 − k2
⊥

)
ωy−

i
kx

ωy0, (3)

where k2
⊥ = k2

x +k2
z ,c = ω/kx, and s =−iω is the Laplace trans-

form variable.The initial functions of υ and ωy in time are υ0
and ωy0, respectively. The other velocity components, u and w,
are then recoverable from the incompressiblity constraint and
the expression for ωy in terms of derivatives of u and w.

Analysis of the Inviscid Equations

We consider first the homogeneous inviscid equation for υ, i.e.
(2) with ν and υ0 = 0.

d2υ

dy2 −
(

U ′′(y)
U(y)− c

+ k2
⊥

)
υ = 0. (4)

We assume (4) is amenable to a WKB solution

so that υ(y) is given approximately as

υ(y) = χ
−1/4(y)exp

(
±i

Z y√
χ(y′)dy′

)
, (5)

where

χ(y) =− U ′′(y)
U(y)− c

− k2
⊥ (6)

Thus (6) should give a good approximation for υ(y) as long
as |χ(y)| >> |∂

√
χ(y)/∂y|. Note, therefore, the approximation

will likely fail at turning points of χ(y), i.e., y locations where
χ(y) = 0. In our case so there are two potential turning points:
±yc where U(±yc) = c (assuming c is real) and potentially two
more at ±y∗ where U ′′(±y∗)

U(±y∗)−c + k2
⊥ = 0. In the former case the

approximate equation for υ near y = yc is

(y− yc)υ′′−
U ′′(yc)
U ′(yc)

υ = 0, (7)

with solutions

υ = A (y− yc)1/2J1 2

√
−U ′′(yc)

U ′(yc)
(y− yc)

)
+ (8)

B (y− yc)1/2Y1 2

√
−U ′′(yc)

U ′(yc)
(y− yc)

)
,



where J1 and Y1 are Bessel functions. On the other hand, (5 -6)
give the solutions

υ =
[
− U ′′(y)

U(y)− c
− k2

⊥

]−1/4
exp

(
±i

Z yc

y

√
− U ′′(y′)

U(y′)− c
− k2

⊥dy′
)

(9)
away from y = yc. Next, following Langer [3], we note that both
(8) and (9) are satisfied with the choice υ = υ(y;yc) given by

υ(y;±yc) = A±
[±h+(y,±yc)]1/2

χ(y)1/4
J1(±h+(y,±yc)) (10)

+B±
[±h+(y,±yc)]1/2

χ(y)1/4
Y1(±h+(y,±yc)),

where

χ(y) =− U ′′(y)
U(y)− c

− k2
⊥, (11)

and

h±(y1,y2) =
Z y1

y2

√
±χ(y′)dy′, (12)

and we have anticipated the solution υ(y;−yc) for y in the
neighborhood of −yc. One can verify that (9) is compatible
with (10) by using the facts that

Jν(z)→
√

2
πz

cos(z− 1
2

νπ− 1
4

π) (13)

Yν(z)→
√

2
πz

sin(z− 1
2

νπ− 1
4

π)

as |z| → ∞ with |arg(z)|< π.

Similarly, near y = y∗ (see the discussion after Eq.(6)), the ODE
for υ reduces to

υ
′′+α(y− y∗)υ = 0, (14)

where α = d
dy

(
−U ′′(y)
U(y)−c

)
|y=y∗ ,with solutions

υ = C Ai(−α
1/3(y− y∗)) (15)

+ D Bi(−α
1/3(y− y∗)),

where Ai and Bi are Airy functions. Away from y = y∗ the so-
lutions are given by (9) with yc replaced by y∗. Again, the near
and away solutions for both ±y∗ are satisfied by

υ(y;±y∗) = C±
[±h+(y,±y∗)]1/6[

χ(y)1/4
] Ai(±h+(y,±y∗))(16)

+ D±
[±h+(y,±y∗)]1/6[

χ(y)1/4
] Bi(±h+(y,±y∗)) .

Patching Solutions Together

We assume ω is real for the moment. Then if 0 < c = ω/kx <
U(0) = Umax then there exists a yc satisfying U(±yc) = c. Sim-
ilarly, if −U ′′(0)/(U(0)− c) < k2

⊥ then there exists a y∗ such
that −U ′′(±y∗)/(U(±y∗)− c) = k2

⊥.

Consider the case where±yc exist but±y∗ do not. Then υ(y,yc)
will be a valid solution for 0 ≤ y ≤ δ while υ(y,−yc) will be
valid for−δ≤ y≤ 0, both given by (10). Enforcing υ(0,+yc) =
υ(0,−yc) and υ′(0,+yc) = υ′(0,−yc), we find that

A+ =
π

2
[Θ(Y0(Θ)J1(Θ)+Y1(Θ)J0(Θ)−Y1(Θ)J1(Θ)]A−

+π

[
ΘY0(Θ)Y1(Θ)− 1

2
Y1(Θ)2

]
B−

B+ = −π

[
ΘJ0(Θ)J1(Θ)− 1

2
J1(Θ)2

]
A− (17)

−π

2
[Θ(Y0(Θ)J1(Θ)+Y1(Θ)J0(Θ)−Y1(Θ)J1(Θ)]B−,

where Θ =
R yc

0

√
χ(y′)dy′. If we assume that the asymptotic

formulas for the Bessel functions (16) hold in the vicinity of
y = 0 , we find readily that υ(y;yc) and υ(y;−yc) match exactly
if

A− = −A+ sin2Θ+B+ cos2Θ (18)
B− = A+ cos2Θ+B+ sin2Θ.

The case in which±y∗ exist but±yc do not proceeds in an anal-
ogous manner. In this case patching at y = 0 will involve the
functions defined by (16) and their derivatives.

Finally, when both ±y∗ and ±yc exist, patching must be done
at three locations: between between −yc and −y∗ , between
−y∗ and y∗, and between y∗ and yc. Matching the functions and
their first derivatives at a specific location gives the required
connection.

χ Negative

The solutions (10) are appropriate when χ is positive yielding
oscillatory functions. They are still valid when χ is negative but
not necessarily convenient. In this case, we can express (10) in
terms of modified Bessel functions. For example, for y > yc and
the choice

√
χ =−i

√−χ (10) for υ(y;yc) becomes

υ(y;yc) = − [h−(yc,y)]1/2

[−χ(y)]1/4
(A+ + iB+)I1 (h−(yc,y))(19)

− [h−(yc,y)]1/2

[−χ(y)]1/4
2
π

B+K1 (h−(yc,y)) .

Green’s Function for υ(y)

The Green’s function G(y,yo) for (4) satisfies

d2G
dy2 −

(
U ′′(y)

U(y)− c
+ k2

⊥

)
G = δ(y− yo), (20)

with boundary conditions G(±δ,yo) = 0. Consider the case in
which ±yc exist but ±y∗ do not and suppose yo > yc. Then, for
y > yo, a component of G is given by



G+(y,yo) = − [h−(yc,y)]1/2

[−χ(y)]1/4
K1(Ψ)I1 (h−(yc,y)) (21)

+
[h−(yc,y)]1/2

[−χ(y)]1/4
I1(Ψ)K1 (h−(yc,y)) ,

satisfying G+(δ) = 0, where Ψ =
R

δ

yc

√
−χ(y′)dy′. At the same

time, we find similarly that another component of G for −δ ≤
y≤ 0 is given by

G−(y,yo) = − [h−(y,−yc)]1/2

[−χ(y)]1/4
K1(Ψ)I1 (h−(y,−yc))(22)

+
[h−(y,−yc)]1/2

[−χ(y)]1/4
I1(Ψ)K1 (h−(y,−yc)) ,

satisfying G−(−δ,yo) = 0.

Next we need to continue the component (22) all the way to the
interval yc < y < δ where yo is located. Again using the choice√

χ =−i
√−χ we find that (22) may be expressed as

G−(y,yo) =
[h+(−yc,y)]1/2

[χ(y)]1/4
(K1(Ψ)+

iπ
2

I1(Ψ))J1(h+(−yc,y))

− [h+(−yc,y)]1/2

[χ(y)]1/4
π

2
I1(Ψ)Y1(h+(−yc,y)), (23)

suitable for the interval−yc ≤ y≤ 0. Now using the connection
or patching formulas (17), we determine G as

G−(y,yo) = A+
[h+(y,yc)]1/2

χ(y)1/4
J1 (h+(y,yc)) (24)

+ B+
[h+(y,yc)]1/2

χ(y)1/4
Y1 (h+(y,yc)) ,

in the interval 0≤ y≤ yc with

A+ = −K1(Ψ)sinΘJY −
π

2
I1(Ψ)(cosΘY + isinΘJY )

B+ = K1(Ψ)cosΘJ +
πi
2

I1(Ψ)(cosΘJ + isinΘJY ), (25)

where

cosΘJ = −π

[
ΘJ0(Θ)J1(Θ)− 1

2
J1(Θ)2

]
(26)

cosΘY = π

[
ΘY0(Θ)Y1(Θ)− 1

2
Y1(Θ)2

]
sinΘJY = −π

2
[Θ(Y0(Θ)J1(Θ)+Y1(Θ)J0(Θ))−Y1(Θ)J1(Θ)] .

Each of the ΘJ ,ΘY , and ΘJY → 2Θ as each of them → ∞. Fi-
nally, we use (19) again to rewrite (24) in terms of modified
Bessel functions:

G−(y,yo)=
[h−(yc,y)]1/2

[−χ(y)]1/4
[p−I1 (h−(yc,y))+q−K1 (h−(yc,y))] ,

(27)

to give G−(y,yo) in the interval yc ≤ y≤ yo. where

p− = −iK1(Ψ)(cosΘJ + isinΘJY )

+
π

2
I1(Ψ)(cosΘY + cosΘJ +2isinΘJY ) (28)

q− = − 2
π

K1(Ψ)cosΘJ − iI1(Ψ)(cosΘY + isinΘJY ).

Using (24) we see that the analogous factors for G+ are

p+ = −K1(Ψ) (29)
q+ = I1(Ψ)

To construct the Green’s function we note that G defined by

G(y,yo) = αG−(y)G+(yo) (y < yo) (30)
= αG−(yo)G+(y) (y > yo)

is continuous at y = yo and satisfies G(±δ,yo) = 0. By using
the condition

∂G
∂y
|y−yo=0+ − ∂G

∂y
|y−yo=0− = 1 (31)

we find that α is given by

α =
1

2(p+q−− p−q+)
. (32)

A similar analysis will produce the Green’s function for the
case in which both ±yc and ±y∗ exist. In addition, it is rather
straightforward to find the solution to (3) for ωy(y) once υ has
been determined.

Example: Plane Poiseuille Flow

In this section we apply our analysis to the case of plane
Poiseuille flow: U(y) = Uo(1− y2/δ2). We choose to nondi-
mensionalize by setting Uo = δ = 1 so that χ(y) = 2/(1− c−
y2)− k2

⊥. Therefore yc =
√

1− c, if 0≤ c≤ 1, and y∗ will exist

if k2
⊥(1− c)≥ 2 and, if so, y∗ =

√
1− c−2/k2

⊥.

Figs. 1-5 show results for the coefficient of the Green’s func-
tion, α, for small positive and negative c. (See Eqs. (30) and
(32)). Note that the coefficient has significant amplitude only in
a narrow strip of the (c,k⊥) plane. And from Figure 3 note that
there is a one-dimensional family of solutions for c < 0 where
α = ∞ corresponding to homogeneous solutions to the inviscid
equation (3) with c real. For c > 0 homogeneous solutions also
exist but for c complex as implied by Figs. 4 and 5.

Conclusions

Semi-analytical solutions to the inviscid linearized equations
for channel flow are determined. After a Laplace transform
in time and a double Fourier transform in space the WKB ap-
proximation is used on the resulting system of ODE’s in y to
construct the Green’s function for such solutions in terms of
the Bessel functions J1 and Y1, their modified counterparts, and
the Airy functions Ai and Bi. Here the critical layers or the y
locations where U(y) = ω/kx require special attention, when
they exist, as well as the locations of the turning points where
d2U/dy2 = (k2

x +k2
z )(ω/kx−U(y)), when they exist. This anal-

ysis then gives the response of the linear system to an arbitrary



Figure 1: Real part of α in the (c,k⊥) plane for c positive. Red,
amplitude ≈+10; Yellow, amplitude ≈−10.

Figure 2: Imaginary part of α in the (c,k⊥) plane for c positive.
Red, amplitude ≈+10.

forcing function, facilitating the investigation of many aspects
of turbulent flows. Viscous corrections to the inviscid solutions
will be required at the walls and at the critical layers. Applica-
tion to the case of plane Poiseuille flow has revealed a narrow
strip of high-amplitude solutions for the Green’s function in the
(c,k⊥) plane including a one-dimensional family of homoge-
neous solutions to the inviscid equations with c real for c < 0
and c complex for c > 0.
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[5] Zare, A., Jovanović, M. R. and Georgiou, T. T. , Color of
turbulence, J. Fluid Mech., 2016 (submitted).


